If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2+4n-1=0
a = 6; b = 4; c = -1;
Δ = b2-4ac
Δ = 42-4·6·(-1)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{10}}{2*6}=\frac{-4-2\sqrt{10}}{12} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{10}}{2*6}=\frac{-4+2\sqrt{10}}{12} $
| 16y-21=19 | | -3(5r-9)=-23-4r | | (x+7)^=81 | | 4(2z−5)= −4−4 | | g/6+12=21 | | -9x+23=86 | | -9(w+4)=-2w+6 | | x+7^=81 | | 3r-r=-16r-48-12r+-6 | | 9x-7=-88 | | 7x+21+4x+12=6x-6 | | 30=-9(6f-7) | | E^x=5.9 | | 301)4.3=n/3.1 | | -13+n+5+6=5+n-4 | | y/11-6=2 | | 2x+1+33=99 | | 5/4=n/3.1 | | 3z-4z=-31 | | 3s-27=65 | | 5c^2+5c=36 | | 4+3(t+2)=10 | | ¾/n=7/28 | | 180=2/y | | 3(5x+10)=10x-20 | | 540=5x+225 | | 12×-4+3x=8+5x | | -8y+9+6=30 | | -354=6(-8x-19) | | x2–17x+16=0 | | 8(-9x+8)=-728 | | v2+42v=0 |